If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x=6=0
We move all terms to the left:
x^2+5x-(6)=0
a = 1; b = 5; c = -6;
Δ = b2-4ac
Δ = 52-4·1·(-6)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-7}{2*1}=\frac{-12}{2} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+7}{2*1}=\frac{2}{2} =1 $
| d+-73=18 | | 2t+9=39t+ | | 1/5(d+15)−(−5)=6 | | 5(2x+3)=10+8 | | -7(m+81)=7 | | -1.5t+2=9.5 | | 9(8m=+3)-8=667 | | 7y+8=48 | | -10n-9=94 | | x^2-7x-18=12 | | 2=6x-34 | | 4(i+3)=1 | | 5(0.5x-4)=5/2x-20 | | 7(3p-1)-(p+5)=-52 | | 58+78=f | | 2m−119=m10 | | 14=2m+8 | | w5=11 | | 19=3s+10 | | 15(x+15)-(-5)=6 | | 32=4f-40 | | 7y-15=6y-1 | | y-5(y+10)=186 | | 10=-35+9x | | −7= −3+a | | -2=-4+w/8 | | 0.6x+1.2=1.1x+1.65 | | c+23/4=10 | | 5x−2/11=-7 | | −7= −3+a | | 7^2x-1=11^x | | 2q-12=2 |